diff options
Diffstat (limited to '3rdparty/include/glm/gtx/compatibility.hpp')
-rw-r--r-- | 3rdparty/include/glm/gtx/compatibility.hpp | 158 |
1 files changed, 158 insertions, 0 deletions
diff --git a/3rdparty/include/glm/gtx/compatibility.hpp b/3rdparty/include/glm/gtx/compatibility.hpp new file mode 100644 index 0000000..6a3623b --- /dev/null +++ b/3rdparty/include/glm/gtx/compatibility.hpp @@ -0,0 +1,158 @@ +/////////////////////////////////////////////////////////////////////////////////// +/// OpenGL Mathematics (glm.g-truc.net) +/// +/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net) +/// Permission is hereby granted, free of charge, to any person obtaining a copy +/// of this software and associated documentation files (the "Software"), to deal +/// in the Software without restriction, including without limitation the rights +/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +/// copies of the Software, and to permit persons to whom the Software is +/// furnished to do so, subject to the following conditions: +/// +/// The above copyright notice and this permission notice shall be included in +/// all copies or substantial portions of the Software. +/// +/// Restrictions: +/// By making use of the Software for military purposes, you choose to make +/// a Bunny unhappy. +/// +/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +/// THE SOFTWARE. +/// +/// @ref gtx_compatibility +/// @file glm/gtx/compatibility.hpp +/// @date 2007-01-24 / 2011-06-07 +/// @author Christophe Riccio +/// +/// @see core (dependence) +/// @see gtc_half_float (dependence) +/// +/// @defgroup gtx_compatibility GLM_GTX_compatibility +/// @ingroup gtx +/// +/// @brief Provide functions to increase the compatibility with Cg and HLSL languages +/// +/// <glm/gtx/compatibility.hpp> need to be included to use these functionalities. +/////////////////////////////////////////////////////////////////////////////////// + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include "../gtc/quaternion.hpp" + +#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED)) +# pragma message("GLM: GLM_GTX_compatibility extension included") +#endif + +#if(GLM_COMPILER & GLM_COMPILER_VC) +# include <cfloat> +#elif(GLM_COMPILER & GLM_COMPILER_GCC) +# include <cmath> +# if(GLM_PLATFORM & GLM_PLATFORM_ANDROID) +# undef isfinite +# endif +#endif//GLM_COMPILER + +namespace glm +{ + /// @addtogroup gtx_compatibility + /// @{ + + template <typename T> GLM_FUNC_QUALIFIER T lerp(T x, T y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) + template <typename T, precision P> GLM_FUNC_QUALIFIER tvec2<T, P> lerp(const tvec2<T, P>& x, const tvec2<T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) + + template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> lerp(const tvec3<T, P>& x, const tvec3<T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) + template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<T, P> lerp(const tvec4<T, P>& x, const tvec4<T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) + template <typename T, precision P> GLM_FUNC_QUALIFIER tvec2<T, P> lerp(const tvec2<T, P>& x, const tvec2<T, P>& y, const tvec2<T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) + template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> lerp(const tvec3<T, P>& x, const tvec3<T, P>& y, const tvec3<T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) + template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<T, P> lerp(const tvec4<T, P>& x, const tvec4<T, P>& y, const tvec4<T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) + + template <typename T, precision P> GLM_FUNC_QUALIFIER T saturate(T x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility) + template <typename T, precision P> GLM_FUNC_QUALIFIER tvec2<T, P> saturate(const tvec2<T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility) + template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> saturate(const tvec3<T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility) + template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<T, P> saturate(const tvec4<T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility) + + template <typename T, precision P> GLM_FUNC_QUALIFIER T atan2(T x, T y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility) + template <typename T, precision P> GLM_FUNC_QUALIFIER tvec2<T, P> atan2(const tvec2<T, P>& x, const tvec2<T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility) + template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> atan2(const tvec3<T, P>& x, const tvec3<T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility) + template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<T, P> atan2(const tvec4<T, P>& x, const tvec4<T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility) + + template <typename genType> GLM_FUNC_DECL bool isfinite(genType const & x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility) + template <typename T, precision P> GLM_FUNC_DECL tvec2<bool, P> isfinite(const tvec2<T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility) + template <typename T, precision P> GLM_FUNC_DECL tvec3<bool, P> isfinite(const tvec3<T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility) + template <typename T, precision P> GLM_FUNC_DECL tvec4<bool, P> isfinite(const tvec4<T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility) + + typedef bool bool1; //!< \brief boolean type with 1 component. (From GLM_GTX_compatibility extension) + typedef tvec2<bool, highp> bool2; //!< \brief boolean type with 2 components. (From GLM_GTX_compatibility extension) + typedef tvec3<bool, highp> bool3; //!< \brief boolean type with 3 components. (From GLM_GTX_compatibility extension) + typedef tvec4<bool, highp> bool4; //!< \brief boolean type with 4 components. (From GLM_GTX_compatibility extension) + + typedef bool bool1x1; //!< \brief boolean matrix with 1 x 1 component. (From GLM_GTX_compatibility extension) + typedef tmat2x2<bool, highp> bool2x2; //!< \brief boolean matrix with 2 x 2 components. (From GLM_GTX_compatibility extension) + typedef tmat2x3<bool, highp> bool2x3; //!< \brief boolean matrix with 2 x 3 components. (From GLM_GTX_compatibility extension) + typedef tmat2x4<bool, highp> bool2x4; //!< \brief boolean matrix with 2 x 4 components. (From GLM_GTX_compatibility extension) + typedef tmat3x2<bool, highp> bool3x2; //!< \brief boolean matrix with 3 x 2 components. (From GLM_GTX_compatibility extension) + typedef tmat3x3<bool, highp> bool3x3; //!< \brief boolean matrix with 3 x 3 components. (From GLM_GTX_compatibility extension) + typedef tmat3x4<bool, highp> bool3x4; //!< \brief boolean matrix with 3 x 4 components. (From GLM_GTX_compatibility extension) + typedef tmat4x2<bool, highp> bool4x2; //!< \brief boolean matrix with 4 x 2 components. (From GLM_GTX_compatibility extension) + typedef tmat4x3<bool, highp> bool4x3; //!< \brief boolean matrix with 4 x 3 components. (From GLM_GTX_compatibility extension) + typedef tmat4x4<bool, highp> bool4x4; //!< \brief boolean matrix with 4 x 4 components. (From GLM_GTX_compatibility extension) + + typedef int int1; //!< \brief integer vector with 1 component. (From GLM_GTX_compatibility extension) + typedef tvec2<int, highp> int2; //!< \brief integer vector with 2 components. (From GLM_GTX_compatibility extension) + typedef tvec3<int, highp> int3; //!< \brief integer vector with 3 components. (From GLM_GTX_compatibility extension) + typedef tvec4<int, highp> int4; //!< \brief integer vector with 4 components. (From GLM_GTX_compatibility extension) + + typedef int int1x1; //!< \brief integer matrix with 1 component. (From GLM_GTX_compatibility extension) + typedef tmat2x2<int, highp> int2x2; //!< \brief integer matrix with 2 x 2 components. (From GLM_GTX_compatibility extension) + typedef tmat2x3<int, highp> int2x3; //!< \brief integer matrix with 2 x 3 components. (From GLM_GTX_compatibility extension) + typedef tmat2x4<int, highp> int2x4; //!< \brief integer matrix with 2 x 4 components. (From GLM_GTX_compatibility extension) + typedef tmat3x2<int, highp> int3x2; //!< \brief integer matrix with 3 x 2 components. (From GLM_GTX_compatibility extension) + typedef tmat3x3<int, highp> int3x3; //!< \brief integer matrix with 3 x 3 components. (From GLM_GTX_compatibility extension) + typedef tmat3x4<int, highp> int3x4; //!< \brief integer matrix with 3 x 4 components. (From GLM_GTX_compatibility extension) + typedef tmat4x2<int, highp> int4x2; //!< \brief integer matrix with 4 x 2 components. (From GLM_GTX_compatibility extension) + typedef tmat4x3<int, highp> int4x3; //!< \brief integer matrix with 4 x 3 components. (From GLM_GTX_compatibility extension) + typedef tmat4x4<int, highp> int4x4; //!< \brief integer matrix with 4 x 4 components. (From GLM_GTX_compatibility extension) + + typedef float float1; //!< \brief single-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension) + typedef tvec2<float, highp> float2; //!< \brief single-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension) + typedef tvec3<float, highp> float3; //!< \brief single-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension) + typedef tvec4<float, highp> float4; //!< \brief single-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension) + + typedef float float1x1; //!< \brief single-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension) + typedef tmat2x2<float, highp> float2x2; //!< \brief single-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension) + typedef tmat2x3<float, highp> float2x3; //!< \brief single-precision floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension) + typedef tmat2x4<float, highp> float2x4; //!< \brief single-precision floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension) + typedef tmat3x2<float, highp> float3x2; //!< \brief single-precision floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension) + typedef tmat3x3<float, highp> float3x3; //!< \brief single-precision floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension) + typedef tmat3x4<float, highp> float3x4; //!< \brief single-precision floating-point matrix with 3 x 4 components. (From GLM_GTX_compatibility extension) + typedef tmat4x2<float, highp> float4x2; //!< \brief single-precision floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension) + typedef tmat4x3<float, highp> float4x3; //!< \brief single-precision floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension) + typedef tmat4x4<float, highp> float4x4; //!< \brief single-precision floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension) + + typedef double double1; //!< \brief double-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension) + typedef tvec2<double, highp> double2; //!< \brief double-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension) + typedef tvec3<double, highp> double3; //!< \brief double-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension) + typedef tvec4<double, highp> double4; //!< \brief double-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension) + + typedef double double1x1; //!< \brief double-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension) + typedef tmat2x2<double, highp> double2x2; //!< \brief double-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension) + typedef tmat2x3<double, highp> double2x3; //!< \brief double-precision floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension) + typedef tmat2x4<double, highp> double2x4; //!< \brief double-precision floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension) + typedef tmat3x2<double, highp> double3x2; //!< \brief double-precision floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension) + typedef tmat3x3<double, highp> double3x3; //!< \brief double-precision floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension) + typedef tmat3x4<double, highp> double3x4; //!< \brief double-precision floating-point matrix with 3 x 4 components. (From GLM_GTX_compatibility extension) + typedef tmat4x2<double, highp> double4x2; //!< \brief double-precision floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension) + typedef tmat4x3<double, highp> double4x3; //!< \brief double-precision floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension) + typedef tmat4x4<double, highp> double4x4; //!< \brief double-precision floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension) + + /// @} +}//namespace glm + +#include "compatibility.inl" |