1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
|
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_quaternion
/// @file glm/gtc/quaternion.hpp
/// @date 2009-05-21 / 2012-12-20
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtc_half_float (dependence)
/// @see gtc_constants (dependence)
///
/// @defgroup gtc_quaternion GLM_GTC_quaternion
/// @ingroup gtc
///
/// @brief Defines a templated quaternion type and several quaternion operations.
///
/// <glm/gtc/quaternion.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#pragma once
// Dependency:
#include "../mat3x3.hpp"
#include "../mat4x4.hpp"
#include "../vec3.hpp"
#include "../vec4.hpp"
#include "../gtc/constants.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTC_quaternion extension included")
#endif
namespace glm
{
/// @addtogroup gtc_quaternion
/// @{
template <typename T, precision P>
struct tquat
{
typedef tquat<T, P> type;
typedef T value_type;
public:
T x, y, z, w;
//////////////////////////////////////
// Component accesses
# ifdef GLM_FORCE_SIZE_FUNC
typedef size_t size_type;
/// Return the count of components of a quaternion
GLM_FUNC_DECL GLM_CONSTEXPR size_type size() const;
GLM_FUNC_DECL T & operator[](size_type i);
GLM_FUNC_DECL T const & operator[](size_type i) const;
# else
typedef length_t length_type;
/// Return the count of components of a quaternion
GLM_FUNC_DECL GLM_CONSTEXPR length_type length() const;
GLM_FUNC_DECL T & operator[](length_type i);
GLM_FUNC_DECL T const & operator[](length_type i) const;
# endif//GLM_FORCE_SIZE_FUNC
//////////////////////////////////////
// Implicit basic constructors
GLM_FUNC_DECL tquat();
GLM_FUNC_DECL tquat(tquat<T, P> const & q);
template <precision Q>
GLM_FUNC_DECL tquat(tquat<T, Q> const & q);
//////////////////////////////////////
// Explicit basic constructors
GLM_FUNC_DECL explicit tquat(ctor);
GLM_FUNC_DECL explicit tquat(T const & s, tvec3<T, P> const & v);
GLM_FUNC_DECL tquat(T const & w, T const & x, T const & y, T const & z);
//////////////////////////////////////
// Convertions
# ifdef GLM_FORCE_EXPLICIT_CTOR
template <typename U, precision Q>
GLM_FUNC_DECL explicit tquat(tquat<U, Q> const & q);
# else
template <typename U, precision Q>
GLM_FUNC_DECL tquat(tquat<U, Q> const & q);
# endif
// explicit conversion operators
# if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS
GLM_FUNC_DECL explicit operator tmat3x3<T, P>();
GLM_FUNC_DECL explicit operator tmat4x4<T, P>();
# endif
/// Create a quaternion from two normalized axis
///
/// @param u A first normalized axis
/// @param v A second normalized axis
/// @see gtc_quaternion
/// @see http://lolengine.net/blog/2013/09/18/beautiful-maths-quaternion-from-vectors
GLM_FUNC_DECL explicit tquat(tvec3<T, P> const & u, tvec3<T, P> const & v);
/// Build a quaternion from euler angles (pitch, yaw, roll), in radians.
GLM_FUNC_DECL explicit tquat(tvec3<T, P> const & eulerAngles);
GLM_FUNC_DECL explicit tquat(tmat3x3<T, P> const & m);
GLM_FUNC_DECL explicit tquat(tmat4x4<T, P> const & m);
//////////////////////////////////////
// Operators
GLM_FUNC_DECL tquat<T, P> & operator=(tquat<T, P> const & m);
template <typename U>
GLM_FUNC_DECL tquat<T, P> & operator=(tquat<U, P> const & m);
template <typename U>
GLM_FUNC_DECL tquat<T, P> & operator+=(tquat<U, P> const & q);
template <typename U>
GLM_FUNC_DECL tquat<T, P> & operator*=(tquat<U, P> const & q);
template <typename U>
GLM_FUNC_DECL tquat<T, P> & operator*=(U s);
template <typename U>
GLM_FUNC_DECL tquat<T, P> & operator/=(U s);
};
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> operator-(tquat<T, P> const & q);
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> operator+(tquat<T, P> const & q, tquat<T, P> const & p);
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> operator*(tquat<T, P> const & q, tquat<T, P> const & p);
template <typename T, precision P>
GLM_FUNC_DECL tvec3<T, P> operator*(tquat<T, P> const & q, tvec3<T, P> const & v);
template <typename T, precision P>
GLM_FUNC_DECL tvec3<T, P> operator*(tvec3<T, P> const & v, tquat<T, P> const & q);
template <typename T, precision P>
GLM_FUNC_DECL tvec4<T, P> operator*(tquat<T, P> const & q, tvec4<T, P> const & v);
template <typename T, precision P>
GLM_FUNC_DECL tvec4<T, P> operator*(tvec4<T, P> const & v, tquat<T, P> const & q);
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> operator*(tquat<T, P> const & q, T const & s);
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> operator*(T const & s, tquat<T, P> const & q);
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> operator/(tquat<T, P> const & q, T const & s);
/// Returns the length of the quaternion.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL T length(tquat<T, P> const & q);
/// Returns the normalized quaternion.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> normalize(tquat<T, P> const & q);
/// Returns dot product of q1 and q2, i.e., q1[0] * q2[0] + q1[1] * q2[1] + ...
///
/// @see gtc_quaternion
template <typename T, precision P, template <typename, precision> class quatType>
GLM_FUNC_DECL T dot(quatType<T, P> const & x, quatType<T, P> const & y);
/// Spherical linear interpolation of two quaternions.
/// The interpolation is oriented and the rotation is performed at constant speed.
/// For short path spherical linear interpolation, use the slerp function.
///
/// @param x A quaternion
/// @param y A quaternion
/// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1].
/// @tparam T Value type used to build the quaternion. Supported: half, float or double.
/// @see gtc_quaternion
/// @see - slerp(tquat<T, P> const & x, tquat<T, P> const & y, T const & a)
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T a);
/// Linear interpolation of two quaternions.
/// The interpolation is oriented.
///
/// @param x A quaternion
/// @param y A quaternion
/// @param a Interpolation factor. The interpolation is defined in the range [0, 1].
/// @tparam T Value type used to build the quaternion. Supported: half, float or double.
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> lerp(tquat<T, P> const & x, tquat<T, P> const & y, T a);
/// Spherical linear interpolation of two quaternions.
/// The interpolation always take the short path and the rotation is performed at constant speed.
///
/// @param x A quaternion
/// @param y A quaternion
/// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1].
/// @tparam T Value type used to build the quaternion. Supported: half, float or double.
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> slerp(tquat<T, P> const & x, tquat<T, P> const & y, T a);
/// Returns the q conjugate.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> conjugate(tquat<T, P> const & q);
/// Returns the q inverse.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> inverse(tquat<T, P> const & q);
/// Rotates a quaternion from a vector of 3 components axis and an angle.
///
/// @param q Source orientation
/// @param angle Angle expressed in radians.
/// @param axis Axis of the rotation
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> rotate(tquat<T, P> const & q, T const & angle, tvec3<T, P> const & axis);
/// Returns euler angles, yitch as x, yaw as y, roll as z.
/// The result is expressed in radians if GLM_FORCE_RADIANS is defined or degrees otherwise.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tvec3<T, P> eulerAngles(tquat<T, P> const & x);
/// Returns roll value of euler angles expressed in radians.
///
/// @see gtx_quaternion
template <typename T, precision P>
GLM_FUNC_DECL T roll(tquat<T, P> const & x);
/// Returns pitch value of euler angles expressed in radians.
///
/// @see gtx_quaternion
template <typename T, precision P>
GLM_FUNC_DECL T pitch(tquat<T, P> const & x);
/// Returns yaw value of euler angles expressed in radians.
///
/// @see gtx_quaternion
template <typename T, precision P>
GLM_FUNC_DECL T yaw(tquat<T, P> const & x);
/// Converts a quaternion to a 3 * 3 matrix.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tmat3x3<T, P> mat3_cast(tquat<T, P> const & x);
/// Converts a quaternion to a 4 * 4 matrix.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tmat4x4<T, P> mat4_cast(tquat<T, P> const & x);
/// Converts a 3 * 3 matrix to a quaternion.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> quat_cast(tmat3x3<T, P> const & x);
/// Converts a 4 * 4 matrix to a quaternion.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> quat_cast(tmat4x4<T, P> const & x);
/// Returns the quaternion rotation angle.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL T angle(tquat<T, P> const & x);
/// Returns the q rotation axis.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tvec3<T, P> axis(tquat<T, P> const & x);
/// Build a quaternion from an angle and a normalized axis.
///
/// @param angle Angle expressed in radians.
/// @param axis Axis of the quaternion, must be normalized.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> angleAxis(T const & angle, tvec3<T, P> const & axis);
/// Returns the component-wise comparison result of x < y.
///
/// @tparam quatType Floating-point quaternion types.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tvec4<bool, P> lessThan(tquat<T, P> const & x, tquat<T, P> const & y);
/// Returns the component-wise comparison of result x <= y.
///
/// @tparam quatType Floating-point quaternion types.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tvec4<bool, P> lessThanEqual(tquat<T, P> const & x, tquat<T, P> const & y);
/// Returns the component-wise comparison of result x > y.
///
/// @tparam quatType Floating-point quaternion types.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tvec4<bool, P> greaterThan(tquat<T, P> const & x, tquat<T, P> const & y);
/// Returns the component-wise comparison of result x >= y.
///
/// @tparam quatType Floating-point quaternion types.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tvec4<bool, P> greaterThanEqual(tquat<T, P> const & x, tquat<T, P> const & y);
/// Returns the component-wise comparison of result x == y.
///
/// @tparam quatType Floating-point quaternion types.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tvec4<bool, P> equal(tquat<T, P> const & x, tquat<T, P> const & y);
/// Returns the component-wise comparison of result x != y.
///
/// @tparam quatType Floating-point quaternion types.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tvec4<bool, P> notEqual(tquat<T, P> const & x, tquat<T, P> const & y);
/// @}
} //namespace glm
#include "quaternion.inl"
|