summaryrefslogtreecommitdiff
path: root/3rdparty/include/glm/gtx/integer.inl
blob: 360818b1cd74eac63ae9ffd86768c1e6a76952ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
/// 
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
/// 
/// Restrictions:
///		By making use of the Software for military purposes, you choose to make
///		a Bunny unhappy.
/// 
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_integer
/// @file glm/gtx/integer.inl
/// @date 2005-12-24 / 2011-10-13
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////////////////////

namespace glm
{
	// pow
	GLM_FUNC_QUALIFIER int pow(int x, int y)
	{
		if(y == 0)
			return 1;
		int result = x;
		for(int i = 1; i < y; ++i)
			result *= x;
		return result;
	}

	// sqrt: From Christopher J. Musial, An integer square root, Graphics Gems, 1990, page 387
	GLM_FUNC_QUALIFIER int sqrt(int x)
	{
		if(x <= 1) return x;

		int NextTrial = x >> 1;
		int CurrentAnswer;

		do
		{
			CurrentAnswer = NextTrial;
			NextTrial = (NextTrial + x / NextTrial) >> 1;
		} while(NextTrial < CurrentAnswer);

		return CurrentAnswer;
	}

// Henry Gordon Dietz: http://aggregate.org/MAGIC/
namespace detail
{
	GLM_FUNC_QUALIFIER unsigned int ones32(unsigned int x)
	{
		/* 32-bit recursive reduction using SWAR...
		but first step is mapping 2-bit values
		into sum of 2 1-bit values in sneaky way
		*/
		x -= ((x >> 1) & 0x55555555);
		x = (((x >> 2) & 0x33333333) + (x & 0x33333333));
		x = (((x >> 4) + x) & 0x0f0f0f0f);
		x += (x >> 8);
		x += (x >> 16);
		return(x & 0x0000003f);
	}
}//namespace detail

	// Henry Gordon Dietz: http://aggregate.org/MAGIC/
/*
	GLM_FUNC_QUALIFIER unsigned int floor_log2(unsigned int x)
	{
		x |= (x >> 1);
		x |= (x >> 2);
		x |= (x >> 4);
		x |= (x >> 8);
		x |= (x >> 16);

		return _detail::ones32(x) >> 1;
	}
*/
	// mod
	GLM_FUNC_QUALIFIER int mod(int x, int y)
	{
		return x - y * (x / y);
	}

	// factorial (!12 max, integer only)
	template <typename genType>
	GLM_FUNC_QUALIFIER genType factorial(genType const & x)
	{
		genType Temp = x;
		genType Result;
		for(Result = 1; Temp > 1; --Temp)
			Result *= Temp;
		return Result;
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tvec2<T, P> factorial(
		tvec2<T, P> const & x)
	{
		return tvec2<T, P>(
			factorial(x.x),
			factorial(x.y));
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tvec3<T, P> factorial(
		tvec3<T, P> const & x)
	{
		return tvec3<T, P>(
			factorial(x.x),
			factorial(x.y),
			factorial(x.z));
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tvec4<T, P> factorial(
		tvec4<T, P> const & x)
	{
		return tvec4<T, P>(
			factorial(x.x),
			factorial(x.y),
			factorial(x.z),
			factorial(x.w));
	}

	GLM_FUNC_QUALIFIER uint pow(uint x, uint y)
	{
		uint result = x;
		for(uint i = 1; i < y; ++i)
			result *= x;
		return result;
	}

	GLM_FUNC_QUALIFIER uint sqrt(uint x)
	{
		if(x <= 1) return x;

		uint NextTrial = x >> 1;
		uint CurrentAnswer;

		do
		{
			CurrentAnswer = NextTrial;
			NextTrial = (NextTrial + x / NextTrial) >> 1;
		} while(NextTrial < CurrentAnswer);

		return CurrentAnswer;
	}

	GLM_FUNC_QUALIFIER uint mod(uint x, uint y)
	{
		return x - y * (x / y);
	}

#if(GLM_COMPILER & (GLM_COMPILER_VC | GLM_COMPILER_GCC))

	GLM_FUNC_QUALIFIER unsigned int nlz(unsigned int x) 
	{
		return 31u - findMSB(x);
	}

#else

	// Hackers Delight: http://www.hackersdelight.org/HDcode/nlz.c.txt
	GLM_FUNC_QUALIFIER unsigned int nlz(unsigned int x) 
	{
		int y, m, n;

		y = -int(x >> 16);      // If left half of x is 0,
		m = (y >> 16) & 16;  // set n = 16.  If left half
		n = 16 - m;          // is nonzero, set n = 0 and
		x = x >> m;          // shift x right 16.
							// Now x is of the form 0000xxxx.
		y = x - 0x100;       // If positions 8-15 are 0,
		m = (y >> 16) & 8;   // add 8 to n and shift x left 8.
		n = n + m;
		x = x << m;

		y = x - 0x1000;      // If positions 12-15 are 0,
		m = (y >> 16) & 4;   // add 4 to n and shift x left 4.
		n = n + m;
		x = x << m;

		y = x - 0x4000;      // If positions 14-15 are 0,
		m = (y >> 16) & 2;   // add 2 to n and shift x left 2.
		n = n + m;
		x = x << m;

		y = x >> 14;         // Set y = 0, 1, 2, or 3.
		m = y & ~(y >> 1);   // Set m = 0, 1, 2, or 2 resp.
		return unsigned(n + 2 - m);
	}

#endif//(GLM_COMPILER)

}//namespace glm